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SUMMARY 

A kinematic description is derived for plane strain deformations of unrestricted amplitude in an incompress- 
ible material ideally reinforced parallel to one axis of Lagrangian coordinates. The deformation is simply 
related to the configuration of one reference 'fibre'. For a slab of uniform thickness, equations of motion are 
derived by integration over cross-sections. They relate the motion of the central fibre to the resultant tensile 
and shearing loads over each cross section. 

The equations predict that, in many materials, flexural waves may propagate. In this paper only elastic 
materials are considered. The simple wave solutions are discussed, showing how wave profiles may distort 
until a 'crease' forms at one surface of the slab. These creases play a role somewhat similar to shocks in gas 
dynamics. Some novel differences are revealed by an analysis of the equations governing deformations on 
either side of a crease. 

1. Introduction 

In the pa s t  decade there has been much interest in the mechanics of  materials reinforced in one 

or two directions by families of  's trong'  fibres. Static deformations have been analysed using 

many different theories (see Pipkin [1] and references cited therein),  whilst dynamic distur- 

bances have been analysed largely on the basis of  small deformation theory [2] or of  accelera- 

t ion wave theory (see Green [3] and references cited therein). For  large deformations the most 

fruitful approach is to consider ' ideally reinforced materials '  [4]). In this theory it is assumed 

that the fibres prevent any extension of  the material along each fibre direction. Although no 

real material is completely inextensible in any direction, the assumption gives a good descrip- 

t ion of  materials which are highly anisotropic. It reflects the observation that  in a general 

deformation of  such materials the extension along the 'strong'  directions is negligible compared 

to other components  of  the deformation.  Moreover, the resulting deformation may be taken as 

the leading term in an asymptot ic  expansion procedure.  

For  simplicity, the present paper  deals only with plane strain deformations o f  an incompres- 

sible, ideally reinforced material  which has a reference configuration in which all fibres are 

straight and parallel. Pipkin and Rogers [4] have previously shown that  static deformations o f  

such materials are simply described. In this paper  it  is shown that  dynamic disturbances may 

similarly be described, since the configuration at any instant is completely determined by the 

locat ion o f  two material  curves. 
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The 'ideal' assumption leads to the frequent occurrence of layers of concentrated load 
(infinite stress) on portions of  the boundary which are tangential to the fibres. Although this 

behaviour may appear unrealistic, it is now known to be a mathematical consequence of the 
kinematic constraint of fibre inextensibility. The description of materials having small fibre 
compliance involves a singular perturbation within the theory of anisotropic elasticity, and so 
exhibits 'transition layers' or 'boundary layers'. Within these, the fibres are subjected to large 
tractions which are required in order to balance the large gradients of shear which occur near 
boundaries of highly anisotropic materials. Linear analysis of such layers has been given by 
Everstine and Pipkin [5] and by Spencer [6]. In a forthcoming paper [7] the corresponding 

boundary layers for finite, dynamic deformations will be obtained by asymptotic procedures. 
In the present paper, attention is confmed to the ideal material, and to plane deformations of a 
slab of uniform thickness. 

Section 2 is used to introduce a Lagrangian description which is particularly appropriate for 
materials having fibres parallel to the X1 axis of Lagrangian coordinates. It is found that at each 
point the tangent and the normal to the current 'fibre direction' are particularly important 
directions. This motivates the change to 'fibre-normal coordinates' (s,X2), such that at each 
instant the curves of constant X2 are 'fibres', whilst s = constant denotes that plane cross-sec- 
tion which is normal to the fibres and for which s measures length along some reference fibre 
(e.g. the central fibre). A complete kinematic description of the deformation and velocity fields 
is obtained in Section 3, using these coordinates. The momentum equations are discussed in 
Section 4, where it is shown that all kinematically admissible plane strain disturbances are also 
mechanically admissible. This is a generalization of the result obtained by Pipkin and Rogers [4] 

for static deformations. In Section 6 the momentum equations are integrated over cross-sec- 
tions of  constant s taking account of the concentrated loads in the surface layers as discussed 
in Section 5. The resulting equations involve only two independent variables (s,t) and govern 
motions of the reference fibre. 

Kao and Pipkin, have previously [8] derived an expression for the compressive load which 
causes buckling of an ideally reinforced elastic column on the basis of plane strain theory. The 
present analysis shows that, for slabs of  elastic material, there are two real finite characteristic 
speeds at each cross-section where the compressive load does not exceed the buckling load. 
Consequently, disturbances propagate as waves through regions where the buckling load is not 
exceeded. However, in regions where the buckling load is exceeded the speeds become complex, 
and small amplitude disturbances are unstable. This result confirms the Kao and Pipkin analysis 
of the buckling criterion. 

Section 7 is concerned with simple waves, which are exact solutions of the equations derived 
in Section 6. These solutions demonstrate that, as a wave propagates, the curvature may 
continually increase, until a 'crease' develops at one of the surfaces of the beam. A 'fan' of 
normals centred at this travelling crease then develops. This fan formation may be compared to 
the formation of shocks in gas-dynamic waves. However there is an important distinction, 
which is discussed in Section 8. A gas-dynamic shock may be treated mathematically as a 
discontinuity, across which the flow variables are related by certain algebraic equations. How- 
ever, the mass within a fan is proportional to the angle of the fan, so that the momentum 
within a fan cannot be neglected. Consequently, the equations relating conditions at either side 
of the fan involve rates of change of the fan angle, and so are differential equations rather than 

Journal o/Engineering Math., Vol. 14 (1980) 57-75 



Deformations in an Meal fibre-reinforced slab 59 

algebraic equations. It is shown that an alternative treatment for the propagation of distur- 
bances containing fans is as a free boundary problem, in which one of the equations derived in 
Section 6 is replaced, within the fan, by the condition of constant curvature of  the central fibre. 
The boundaries of the fan are then to be determined as part of the solution. 

In the final section, some special configurations are analysed explicitly. 

2. Dynamic plane strain 

Two dimensional Lagrangian coordinates (XI, X:) are taken so that fibres lie along the material 

curves X2 = constant, and the slab occupies the region - 1  ~< X2 ~< 1. The corresponding 
Eulerian coordinates are (xl,x2), so that the configuration at all times t is given by x = x(X, t). 
The cartesian velocity components are vi = axi/at, whilst Fii = axi[axj are the elements of  

the two-dimensional deformation gradient tensor (i,] =1,2). 
At each point the deformation gradient may be decomposed into two axial elongations A 

and B followed by a simple shear 3' and a rotation through an angle 0, as in Fig. 1. The 
corresponding deformation gradient matrix is 

(Fll FI2) (c°sO -sin:) (~ Y ~ )  
= 

~F21 F22 \ s i n 0  cos 

°,f 5X, 
B S X , ~  

Figure 1. 

(1) 

The parameters A, B, ~' and 0 in a typical state of deformation. 

In an incompressible, ideally inextensible material the dilatation AB and fibre elongation A are 
both unity so that (1) becomes 

') 
= . 

~F2t F22 ~sin 0 cos 1 
(2) 

Correspondingly the velocity v may be resolved into components u and v along and perpendicu- 
lar to the fibres where 

c o o- ,noo) (:) 
= 

v2 ~sin 0 co~ 
(3) 
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To analyse motions x = x(X,t) we look for functions % 0, u and v o f  X1, X2 and t for which 

Fi] and vi satisfy the compatibility conditions 

aF j ar k af j 
and - - -  (4) -- . 

axk  a x  i at a x  i 

Substitution o f  expressions (2) into (41) gives 

a(cos 0) a F n  aF12 _ a(~/cos 0 - sin 0) 
aX2 - aX2 - aX1 aXl 

a(sin 0) ¢3F21 aF22 _ a('y sin 0 + cos 0) 

aX2 aX2 aXl aX1 

so that 7 and 0 must satisfy the equations 

a0 a0 
a X 2  - = 0, (5) 

a ( 7 - O )  = 0 .  (6) 
aX~ 

3. Fibre normal coordinates 

Equations (5) and (6) are kinematic constraints, which apply instantaneously at each time t. 

Equation (6) shows that 7 - 0  is uniform along each 'fibre', so that 

"r = F(X2 ,t) + 0. (7) 

Similarly, equation (5) shows that the curves o f  constant 0 are given, at each instant, by 

dXl [dX2 = - %  From Fig. 1 it may be seen that these curves are normal to the fibres. This leads 
t to  the familiar result [1] that the fibre normals are straight, and inclined at angle 0 + i~r to the 

xl-axis as shown in Fig. 2. The configuration at each time is of  the type described by Pipkin 

and Rogers [4]. The constraints A = 1, B = 1 act instantaneously, ensuring that the sequence of  

configurations is a sequence of  statically allowable configurations. 
For simplicity, we introduce a new coordinate s which labels the fibre normals, and which 

measures distance s = XI along the central fibre X2 = 0. Except on this fibre, the relation 
between s, X1 and X2 depends on t, so that we may write XI = X(s,X2,t) where 

aX = 
a S  2 - ~ .  ( 8 )  
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X,=4 X,=5 

~--o .xeo 

/ 

s= (~  . . _ . j L . . . . . . . ~  s= 2 

61 

s=l 

Figure 2. Deformation of a strip of material showing the relationship between the Lagrangian coordinate X t 
and the coordinate s, which is constant on fibre normals. 

The quantities 

aX ~(s, X2,t),  aX = m(s, X2,t)  (9) 
--~s = a t  

are as ye t  undetermined.  All dependent  c variables are writ ten as functions of  (s, X2, t), whilst the 

rules for transformation of  partial derivatives are 

a 1 a a a 7 a a a m a 
ax----~ -" ~ a s '  a - ~  - '  ~ -~  + ~ a-q-' a t  ~ a t  ~ as  • 

Additionally,  from (8) and (9), the compat ibi l i ty  condit ions 

a£ a7 am aT a~ am 
- - - -  ( 1 0 )  m - -  

ax2 as ' ax2  a t  ' a t  as 

must  be imposed. 

In the new coordinate system equation (5) becomes 

a0 
ax2 = 0, 

so showing that  

0 = O(s,t), (11) 

and consequently equation (7) becomes 

-~ = r ( x ~ , t )  + O(s,t). ( 1 2 )  

The function 0 = O(s,t) is the intrinsic equation for the shape of  the central fibre X2 = 0 at any 

time t, whilst P(X2,t)  measures an arbitrary extra shear which may be imposed at one cross-sec- 
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tion and which is transmitted instantaneously along each fibre. If  one cross-section X1 = 
constant is fixed, or if the deformation has symmetry about some value of s, the shear F(X2,t) 
is zero and (12) becomes 3' = 0. 

Using (12) in (10) gives 

a® 
~(s, X2,  t) = 1 - 2(2 - ~ s  ' (13) 

since the condition £(s,O,t) = 1 follows from X(s,O,t) = s. Similarly when the extra shear I '  is 
written as 

r ( x : , t )  - aft 
ax~ ' 

where ~b = l f l (X2 , t  ) satisfies d/(O,t) = 0, then the equations 

am a 2 ~ ao 

aX2 ax2 a t  at  
and m(s,O,t) = 0 

give 

m(s, X2,t) = a~b a o  (14) - a-7 - x 2  - b T "  

In fibre-normal coordinates the compatibility equations (42) for the velocities become 

avi a F .  aFil avi avi aft2 aFil 
- -  - -  - -  - -  - -  m =~ m ~_ and ~ w + 3 ' ~  = 
as a t  as O$ oA2 O 5 "  a t  

After substitution from equations (2) and (3) these yield 

aO av a0 a0 
u-'~-s +-~-s - ~ - - ~ - + m - - ~ - s  =0 ,  

au a0 
a---; - v = 0 ,  ( i s )  

and the pair of  equations 

a0 av 

(au a0) - v a(3, - 0 )  a ( 7  - 0 )  = 0.  ( 1 6 )  
at  + m as 
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Using equation (11) we fmd from (16) that 

bv - 0 and au aF a s ~b 
0)[2 aX2 at atax: " 

Consequently the velocity components u, v at each point are related to the longitudinal and 
transverse components U, V of the velocity of the central fibre X2 = 0 by 

a~O (17) v = V(s,t) and u(s, X2,t) = U(s,t)+ a---[ " 

When expressions (13), (14) and (17) are substituted into (15) they give 

OU V O0 
a'-s- - -~s  = 0 ( 1 8 )  

and 

a® aV aO - 0 .  (19) U ~ + as at 

These are just the compatibility conditions ensuring that the central fibre does not stretch, and 
that O(s,t) is its inclination to the x~ axis. 

4. The momentum equations 

If t = (ti/) is the two-dimensional Cauchy stress (i,/ = 1,2), the reaction stresses to the con- 
straints AB = 1 and A = 1 are known to be (see Spencer [9] p. 53) respectively an arbitrary 
hydrostatic pressure and arbitrary extra tension along the fibre direction. Since t is symmetric, 
and since F ~  = cos 0, F ~  = sin 0 are the components of the unit vector along the fibres, the 
Cauchy stress may be written as 

CtH t12 / ( c o s 0 - s i n : )  I ( O G G )  (10 i )  (i0 i ) ]  ( c ° s 0  sin00) 
= - p  + T  , 

~t21 t22] \ s i n 0  cos 0 \ - s i n 0  cos 

where p is a hydrostatic pressure and T the extra tension acting in the fibre direction. G is the 
shearing stress acting across the fibres X2 = constant. In elastic materials G depends only on 7, 
whilst in viscoelastic and plastic materials it depends on the history of 3'. 

To analyse f'mite dynamic disturbances we f'md it convenient to use the Piola-Kirchhoffstress 
T, given by 

T = (det F) t (Fr)  -I , 
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where F = (Fi/) and F T denotes its transpose. Then 

Eo(_  :) C i) C :)J = - p  + T  . 

T21 T221 ~sin0  cos0 1 7 0 
(20) 

The two-dimensional momentum equations, in the absence of body forces, are given in Lagran- 

gian coordinates by 

aTil aTi2 avi 
aX--1 + - ~ 2  = p - '~  for i=  1,2, 

and so in fibre-normal coordinates they take the form 

aTil aTi2 aTi2 al) i al) i 
a----S-- + ~ +7 ~ = p 2 - ~ - - p m  as ' (21) 

where p is the uniform density in the reference configuration. When Tq and vi are expressed as 
in (20) and (3), and equations (7) and (11) are utilised, equation (21) yields the momentum 
equations in the fibre and normal directions as 

a (r -  p)-  2a ao aa (au ao) (22) 

and 

T -~s - ~ -ff~-2 + --~s = p~ u --~- + -~  - pm U -~s + -~s . (23) 

Since any motion is completely expressible in terms of the motion U(s,t), V(s,t), ®(s,t) of 
the central fibre and the function if(X2, t) which determines the extra shear, equation (22) may 
be regarded as an equation governing the total tension ( T - p )  along material curves X2 = 
constant at each instant of a kinematically allowable deformation. Similarly, by use of (13), 
equation (23) may be rewritten as 

aX2 ~ +-~s - P 2  u - ~  + ~-[ +pm u - ~  +-~s ' (23a) 

which determines the pressure variation along each normal. Consequently, equations (22) and 
(23a) are merely characteristic equations for T - p  and for p in any admissible motion. The 
corresponding characteristic speeds are both infinite. Thus every kinematically admissible plane 
strain disturbance in an ideal fibre-reinforced material is also mechanically admissible, and is 
attainable when the surface tractions are suitably specified. This is an extension to dynamic 
deformations of a result in the static theory due to Pipkin and Rogers [4]. 
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5. Surface layers 

+ t Let P ~(s, t) and Q-(s, ) denote the tangential and normal tractions applied over the surfaces X2 
= + 1. The the representation (20) for the stress within the slab predicts that G and p should 

satisfy 

a(s,+_l,t) = P±(s,t),  p(s,+_l,t) = - Qt(s , t ) .  (24) 

In an elastic material the shear stress G is given by some function G = G('/), whilst (12) implies 
that 3, - O(s, t) is constant along each of the surfaces X2 = - 1. In general this is not compatible 
with the applied shear-tractions P± (s,t). For example, the surfaces could not be simultaneously 
traction-free (P+ = 0 = P -) over any portion of the slab which is curved. 

The resolution of this paradox, as in similar situations arising in static problems, is to include 
concentrated loads acting along the boundaries [4]. In reality, such loads are distributed 
through thin layers adjacent to the boundaries, where the ideal assumptionsA = 1,AB = 1 are 
only approximately valid. The consequent high tensions ( T - p )  along the fibres are balanced in 
equation (22) by large values of aG/aX2 .  The severe gradients of shear allow G to adjust to the 
boundary condition (241) through a 'boundary layer' as has been demonstrated for linearised 
static deformations by Everstine and Pipkin [5] and by Spencer [6]. Analysis of dynamic defor- 
mations using the present formulation [7] shows that inertia effects are unimportant within the 
boundary layers. 

Let L÷(s,t) and L- ( s ,  t), defined by 

f, f--,+ L ÷ = ( T - p ) d X 2 ,  k -  - ( T - p ) d X 2 ,  
- -  1 

be the concentrated loads carried by the layers immediately adjacent to the surfaces X2 = + 1 
respectively. Similarly, let G~(s, t), G-(s, t), p+(s, t) and p-(s,t) denote the shear stress and pressure 
immediately adjacent to each of these layers. Integration of equation (22) through the bounda- 

ry layers then gives 

p L  ÷ a 
- aX2 

= (1 - Os) [G+(s, t )  - P + ( s ,  t)],  

- -  dX2 = £(s, 1, t) [G+(s,t) -P+(s,0] 

where Os(s,t ) =- a®/as, and similarly 

a L - - - £ ( s , - 1 , t )  f - - t +  aG 
a s  1 aX2 d x 2  = - -  (1 + Os) [a-(S, t) - P-(s, t)]. 

Thus, the loads L ± vary according to 

8L ± 
as = + (1 ¥ 0 , )  [G ±(s,0 - P±(s,t)]. (25) 
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This may be written more compactly as 

OL ± 
a x l  = + (G± - P ± )  (25a) 

and shows that, as in the static theory, the variation of  the load along the boundary layer is 

exactly balanced by the resultant shearing traction. 

O+ P+ 

\ / 

L-N,f~- ~,O- 

Figure 3. Tractions acting on elements of the boundary layers at X 2 = 1 and X 2 = -1, and the resultant 
loads L ÷ and L-within these layers. 

As may be seen from Fig. 3, any curvature of  the boundary must be accompanied by a jump 
in normal stress. This jump is determined, by integration of  (23a) through either layer, from 

f / _  ~ (9.p)dX2 =-Os f /  (T-p)dX2 =-OsL + ~(s, 1, t)  [p+ (s, t) + Q+(s, t)] = - 0--~2 

and a similar equation near X2 = - 1 .  Consequently, using (9) and ( 1 3 )  which give 

aX 
~(s,+_],t) = -~s = 1 ~ a s ,  

we relate the interior pressure p to Q ±(s, t) by 

as L±(s,t). (26) P=P±(S't)=-Q±(s't)¥ 1 ¥ 0  s 

Like (25) this equation may be written more concisely as 

p± _ Q ±  =~L ± aO = ~X--~ on X~ = _+1. (26a) 
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Equations (25a) and (26a) are identical with those for static stress concentration layers. The 

reason is that, in the ideal theory, the layers are negligibly thin and so inertia effects do not 
arise [7]. 

6.  F lexura l  waves  

The motion of the slab is entirely determined by the orientation O(s,t) of the central fibre, by 
its associated velocities U(s,t) and V(s,t), and by the extra shear ~(X2 , t ) .  To obtain governing 

equations for these we first integrate the momentum equations (22) and (23a) over the interior 
region from ?(2 = - 1 +  to X2 = 1- .  Substitution for ~, m, u, v and 0 from (11), (13), (14) and 
(17) gives 

as  ,+ ( T - p ) d X 2  - O, t ax= + [ ~ c ] L - i +  = 2 p ( u t  - r e , )  + 
1+ 

a=~k 
p f_l \  ( l -  dX= 

and 

£ a £- 
£(s, 1, t)p + - £(s , -1 ,  t )p-= Os 1 -  ( T - p ) d X =  + GdX= - 20(UOt + Vt) 

1+ ~ 1+ 

- 2pOt  - -  dX2 - pOs \ a t ]  
1+ at 1+ 

where equation (19) has been used, and Ot = O0/Ot. These equations may be written in terms 
of the resultant longitudinal load 

f2- R ( s , t )  - ( r - p ) d X 2  + L-(s, t) + L÷(s,t), (27) 
1+ 

and the resultant shearing load 

f' £- S(s, t) = GdX2 = GdX=, (28) 
1 1+ 

by use of the results (25) and (26). When subscripts s and t denote partial derivatives, and dots 
denote time derivatives, we obtain 

2p(Ut - VOt) = Rs - SOs - [Zo + osJ  7' + F ( 1  - Os) - P-(1 + Os) , (29) 

and 

2p(UOt + Vt)  = R O  s + Ss - 2OtFo - OsF= + Q+(1 - % )  - Q-(1 + O~). (30) 
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Here 

and 

F o ( t ) - p  f l  t ~kt(X2,t)dX2, F l ( t ) - - p  f~l  X2 ~lt(X2, t)dX2 

F2(t)=P f J l  [~Ot(X2't)]2 dX2 (31) 

are functions of the momenta associated with the extra shearing displacement ~(X2,t), and all 
disappear when ~ is independent of time. 

Equations (18), (19), (29) and (30), together with (28) which relates S to O(s,t) through a 
constitutive law expressing G in terms of the history of ' [  = O(s,t) + O~/aX2, form a system of 
equations governing U(s,t), V(s,t), O(s,t) and R(s,t). (For static deformations, the system is 
equivalent to those treated in [10], [11 ]). The extra shear ~(X2,t) propagates instantaneously 
along each fibre, and since it is determined by conditions on any one cross-section of the slab it 
may be regarded as a forcing function for the system of equations. Likewise, changes in R 
propagate instantaneously along the slab, since equation (29) is the only equation to contain a 
derivative of R(s, t). 

The complete classification of the system depends on the constitutive assumptions relating 
G to 7. In this paper only elastic materials will be considered, so that G = G(7). The shearing 
load is then expressible as 

£ S= G(O+ O~k/aX:)dX2 =-S(O,t), (32) 1 

where the explicit dependence on t arises from the dependence on ff(X2,t). (For deformations 
in which ~b t - 0, equation (32) reduces to S = S(O), whilst for deformations in which ~ - 0 it 
reduces to S = 2G(O)). Substitution of (32) into (30) gives 

2(pU + Fo)O t + 2pV t = (R +So - F2 - Q+ - Q-)Os + (Q+ - Q-) 

where So = as/ao. Whenever 

1 P-I Fo 2, R +So >Q+ + Q-+F2 - (33) 

this equation may be combined with (19) to give the two characteristic differential equations 

aO aV  { aO aV t Q+- Q- (U+c~) Ti- + T i  +c~ (U+c~)  -~s + -~s - 2p (34) 

and 

ooov t oo v} (U+c,)-~- + T i  +c~ (V+c~) T /  + Ts 
Q÷B Q-- 

(35) 
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where the characteristic speeds ct and c2 are given by 
/ 

1 - 1  1 - 1  Q+ 2 2 Cl,C2=]p F o ( t ) + i p  { 2 p ( R + S ® -  - Q - - F 2 ) + F o } .  

In this case the motion is governed by a system of hyperbolic equations, so that the Cauchy 
initial value problem is well-posed for arbitrary choice of initial deformation O(s, 0) and velocity 
V(s,O). However, when the inequality (33) is violated the problem is ill-posed, and instabilities 
may develop. Such instabilities become checked only when R again becomes sufficiently large 
to satisfy (33). For the case ~k = 0, Q* + Q - =  0 condition (33) becomes the static buckling 

condition of Kao and Pipkin [8], and states that the compressive load per unit area of 

cross-section shall not exceed the shear modules ~S® = G'(3'). A mean positive pressure (--~ (Q+ 
+ Q-) > 0) applied over the bounding surfaces serves as an additional stabilising factor. 

7. Simple waves 

When the inequality (33) is satisfied the flexural elastic disturbances are wavelike, and are 
governed by equations (18), (19), (29) and (30). These are non-linear equations. Moreover, 
unless fft(X2,t) = 0, the coefficients and the function S(O,t) depend explicitly on time. Some 
features of the solutions are exhibited by the exact solutions which may be found when the 
extra shear ~k is independent of time and the applied tractions P~, P~ Q+and Q-all vanish. These 
solutions are simple waves. 

When ~b t = 0 and S = S(O) the governing equations reduce to the system of quasi-linear 
partial differential equations 

Us - V®s = O, 

UOs + Vs - Ot = O, 

R s  - S ( O ) O s  - 2 p ( U t  - V O t )  = 0 ,  

R O  s + S'(O)O s - 2p(UO t + lit) = 0, (36) 

which is homogeneous in derivatives with respect to s and t. Any such system possesses 
solutions in which all dependent variables are functions of a single combination ~(s,t) ofs  and t. 
The wavelets 

rgs, t) = constant 

travel with speed c = -rltlrls which is a characteristic speed of the system (36), and which may 
itself depend on r/. The structure of the wave is found by substituting the assumptions U = 
U(r/), V = V01), O = O(r/) and R = R(r/) into the system of equations (36). The resulting set of 
equations is compatible when the speed c is one of the characteristic speeds c~, c2, which in 
this case become 

- -  1 1 

c = c(r/) : + (2p) ~ [R + S'(O)] 2 --- cl,  c2, (37) 
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and when U, V, O and R are related by 

and 

R'(n) = s (o)o ' (n) ,  t / (n)  = v o ' ( n )  

¢ ( n )  = - I v  + c (n ) ]o ' (n ) .  (38) 

The positive and negative signs in (37) apply to waves travelling in the directions of  increasing 
and decreasing s respectively. (Additionally there are solutions (41) corresponding to ~7s = 0). 

For each choice of  sign in (37) the equations (38) express U, V and R as functions of  ®, 
involving three arbitrary constants of  integration. Correspondingly c = c(~) is given by (37), and 
the waveletsare given, without loss of  generality, in the parametric form 

s - c(rl)t = 7- (39) 

In (39), the label r~ denotes the position s = ~(s,0) of  each wavelet at t = 0. The simple waves 
then describe the propagation of  flexural disturbances in which the central fibre has arbitrary 
initial shape O(r/) = O(s,0), provided that U(~), V(r/) and R(r/) are related to 007) as in (38). In 
the disturbance, U, V, R and O are each constant along the wavelets shown on an s, t diagram 
in Fig. 4. Unless c is constant these wavelets will tend to disperse in regions were c'(rl) > 0, but 
to coalesce in regions where c'01) < 0. The curvature of  the central fibre then varies as the wave 
progresses, and is given by 

at/ 9 ~  (40) a o  = o ' ( n )  - 
a-'s- as I ~ c (r/)t 

The tendency for 'shock formation'  in regions of  negative c'(r~) is a familiar feature of  
non-linear waves [12]. Usually, shocks first form at the instant when the wavelets in the s,t  

diagram begin to intersect. This situation can never arise in the present context, since the 
fibre-normals cannot intersect within the slab. Consequently £(s, X2 , t )  must nowhere become 
negative in I X2 I ~ 1, and 'shocks' will be initiated within solutions of  (36) whenever I aO/as I 
reaches unity. The structure of  'shocks', and the corresponding rules for their propagation are 
derived in the next section. 

, t  

Figure 4. The propagation of wavelets ~ = constant within a simple wave, for the case c > 0. 
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In materials for which c'(r/) = 0 there is no tendency for shock formation, and equations 

(38) are readily integrated. These solutions have 

S(@) =/1 sin (O + 6), R(®) = k - / a  cos (@ + 6) 

L 
where each wavelet has the same propagation speed c = +(k/2o) 2 . They describe simple waves 

which travel without distortion at speed c, with profile ® = 0(?7) = O(s-c t )  which is arbitrary 

provided that it satisfies the condition I O'(r/) I < 1. Notice that the speed c is independent of  

the constants bt and 6 which characterise the constitutive law and the extra shear ~ = ~k(X2), 

but  depends on k which is a constant of  integration determined by the boundary conditions for 
R. Within these non-distorting waves the velocity of  the central fibre has intrinsic components 

U = Vo cos (® - e) - c, V = - Pro sin (® - e) 

which correspond to the cartesian components 

U cos O - V sin O = Vo cos e - c cos O, U sin O + V cos O = Vo sin e - c sin O. 

Since solutions of  non-linear equations cannot be superposed, simple waves cannot persist 

once some other disturbance begins to interact. This observation is particularly relevant for the 

waves (38), (39) since the system (36) possesses the characteristics t = constant. Unless U and R 

are correctly specified at a reference cross-section for all t, an interacting disturbance will travel 

infinitely fast through the simple wave. However, under suitable conditions a disturbance 

advancing into an undistorted region of  the slab will be a simple wave. In other situations, the 

interaction region may be treated approximately using the techniques of  modulated simple 

waves ([13], [14], [15]). In all cases, the disturbance emerging ahead of  the flexural wave has 

the simple form 

V = O, ® = O, U = U(t), R = Ro( t )  + 2pst)(t) (41) 

which corresponds to the infinite characteristic speed. It describes a longitudinal rigid body 

motion, with stress resultant R(t)  related to the acceleration U(t). 

8. Fan regions 

Discussion of  the simple waves (38) shows that disturbances propagating according to (36) or to 

(18), (19), (29) and (30) may produce regions in which the normals intersect at one of  the 

surfaces X2 = + 1. Indeed, some initial conditions imply that such a fan forms immediately, 

either at one end of  the beam, or near a point of  concentrated loading. A l a n  has normals which 

meet at a crease on one surface of  the beam, and will generally travel so as to separate two 

portions of  the beam in which I Os I < 1. The equilibrium of static fans has been discussed by 
Pipkin and Rogers [4] and Everstine and Rogers [11], and applied to the solution of  many 

problems (see [16]). The analysis for moving fans provides relations between disturbances on 

either side of  the fan. 
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velocity 
[ jump 

4,,..=m.=.. 

\ 

Figure 5. The configuration of f~res and normals in the vicinity of a fan s~ (t) < s < s 2 (t). 

Consider the fan occupying a region covered by the normals through a moving portion sl (t) 
< s < s2(O of  the central fibre, as in Fig. 5. Then within this region Os = + 1 or - 1, and the 

normals are centred at a crease on )(2 = + 1 or )(2 = - 1 respectively. Equations (18) and (19) 
imply that within the fan O(s,t) g s  depends only on time and that at any instant all points of  

any fibre normal have equal velocities. Thus we may write 

O(s, O Y s = N O  = 0 1 ( 0 ¥ s 1 ( 0  = 0 2 ( 0  ¥ s 2 ( 0 ,  (42) 

U(s, t) = q(O cos O + r(t) sin O + to(t), (43) 

V(s, t) = -q ( t )  sin 0 + r(t) cos O, (44) 

where q(t) and r(t) are cartesian velocity components, and to(t) = ~(t) = Ot is the angular 

velocity associated with the rigid body motion of  the central fibre. (Throughout Sections 8 and 

9 the upper and lower signs correspond to O s = + 1 and Os = - 1 respectively, and any function 

J~(t) denotes the value f(si(t),t  ) of a typical quantity f(s,t) at the edges of  the fan.) From (43) 

and (44) we deduce that the velocities U, Vat  either edge of  the fan are related by 

U1 ¥ to(t) = [Us ¥ to( t ) ]  cos (05 - O1) - II2 sin (02 - Or), 

Vl = [Us ¥ to( t ) ]  sin (05 - O1) + V2 cos (05 - O1), 

(45) 

where (42) gives 

o 5  - o 1  = -+ [ s , ( t )  - s l ( t ) ] .  

Relations (45) confirm that the velocity of  D relative to C is along the internal bisector of  the 
1 angle o f  the fan and has the magnitude 2 1 60 sin 5(®2-O1 ) I associated with a rigid body 

motion having angular velocity to(t), see Fig. 5. 
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Since the kinematics of  the motion within the fan depends only on the three functions w(t), 

q(t) and r(t), all effects are transmitted through the fan instantaneously. Equations (25) and 

(26) correctly give the pressure jump and boundary layer load at the outer surface X2 = ¥ 1, 

whilst equations (22) and (23) still determine T and p within the fan. However, (25) and (26) 

are not valid at the inner surface )(2 = +- 1 where ~ ~ 0 and the pressure and curvature become 

infinite. Consequently equation (23a) cannot be integrated from )(2 = - 1 to )(2 = 1 within the 

fan, so that equation (30) must be discarded. No similar difficulty prevents integration of  (22) 

with respect to 2"2, so that equation (29) holds within the fan, and may be integrated with 

respect to s to give 

f :2 $2 R = - R ,  = G(O)dO+_P[i l ( t )s inO-~t)cosO]s, + p & ( t ) ( O 2 - O , )  
1 

f / '  + P ¥(s, t)ds, 
1 

in the case ~b = O. Use of  (43), (44) shows that this equation becomes 

d R2 - R,  = G(O)dO +p - O , )  - v,)] 
1 

• p(U:O2(t )  - u , e , ( t ) )  +_ f , i '  P¥(s,t)ds. (46) 

Thus, conditions on either side of the fan are related by equations (45) and (46). These are 
equivalent to equations (18), (19) and (29) together with the constraint equation O s = + 1. 

Problems involving moving fans are free boundary problems. Equations (18), (19)and  (29) 

hold everywhere, whilst (30) holds only when the strict inequality I Os I < 1 is satisfied. 

Otherwise it is replaced by the constraint equation I Os I = 1. The boundaries s = sl (t) and s = 

s2(t) of  any region I Os I = 1 are determined as part of  the solution. The quantities O, U, Vand 
R are continuous, but  their derivatives may be discontinuous. 

9. Some special solutions 

i) Longitudinal disturbances 

Almost any disturbance imposed at s = 0 causes a longitudinal load R(s,t)  to be set up 

immediately in the portion s > 0 of  the beam. The leading portion of  flexural disturbance is 

some characteristic ds/dt  = c l ,  or possibly the front s = s2(t) of a fan. Ahead of  this the 

disturbance is purely longitudinal with ® = 0, V = 0, so that (when ~k = 0) the motion is a rigid 

body motion with speed U = U(t) and load R = psU(t) + Ro(t )  as in (41). Consequently the 
longitudinal load in a disturbance neighbouring a free end s = L is 

R(s, t) = p(s - L)  (](t), 

whilst in a disturbance approaching a bonded end U(L, t) = 0 it is 

R = Ro(t) .  
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ii) When a fan sl(t)  <<-s <~ s2(t) advances into a longitudinal region s > s2(t), the conditions 

ahead of  the fan are 

V2 = O, 02 = O, U2 = U( t ) ,  R2 = R2 ( t )  = P(s2 - L ) U ( t )  + R(L ,  t) .  

Consequently w = ¥ ~2(t), ®1 = + [sl (t)  - s2(t)] and the velocities behind the fan are 

V1 = -  (U+s '2 )  sin ®1, UI =-,~2 + ( U + ~ 2 ) c o s  O1. 

The corresponding shear resultant is $1 = 2G(O1 ) whilst the longitudinal load is 

f o ~  d R1 =R2(t)+ 2 G(O)dO T p ~ [~20~ + VI]¥  pUt('}~. 

These relations express condit ions Ul,  V1, $1 and R ~ behind the fan in terms of  the angle 

®1 of  the fan and the speed s2 = s l ¥  O1 (t)  of  the front  of  the fan, and the conditions ahead of  

the fan. Notice however that  the formula for R~(t) involves first derivatives of  some of  these 

quantities, since the jump R2 - R1 in the resultant load is affected by the rate of  change of  

momentum within the fan. 

(o) {b) 

A fan approaching a free end X~ = L through a region undergoing longitudinal motion with 
A fan at the end X a = L. 

Figure 6. (a) 
speed U = U 2 (t). (b) 

iii) In any problem with ~k = 0, a free end s = L has boundary condit ion O(L,t) = O. Whenever 

a flexural disturbance meets this end of  the stab, a fan will form with s2(t) = L, R2 = 0, ®2 = 0, 

so that  co = 0. The conditions at the rear s = sl (t)  of  the fan are then found from 

U1 =/-]2 cos O1 + V2 sin O1, Vi = - U2 sin O1 + V2 cos Ol 

to be 

$1 = 2G(®1), 

where 

R, =2 f : '  C(O)dO ¥ p(fz, _ f'~) ¥ pu~o, ,  

VI - V2 = V1 (1 - cos 01 )  - U 1  sin 01 .  
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These give condi t ions  relating ®x, U~, V~, RI  and $1 at the boundary  s = s l ( t )  = L _+ ® l ( t )  o f  

the region where the full  equa t ions  (18),  (19),  (29)  and (30)  hold.  Hence they  de termine  the 

growth  o f  fans at the ends o f  beams,  and so cont ro l  the consequent  stress concent ra t ions  at the 

corners  X2 = + 1, s = L o f  the slab. Such conf igura t ions  require fur ther  investigation,  since it is 

known that ,  even in isotropic  materials,  stress concen t ra t ions  in corners  are singular. 
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